Type-2 Neuro-Fuzzy Modeling for a Batch Biotechnological Process
نویسندگان
چکیده
In this paper we developed a Type-2 Fuzzy Logic System (T2FLS) in order to model a batch biotechnological process. Type-2 fuzzy logic systems are suitable to drive uncertainty like that arising from process measurements. The developed model is contrasted with an usual type-1 fuzzy model driven by the same uncertain data. Model development is conducted, mainly, by experimental data which is comprised by thirteen data sets obtained from different performances of the process, each data set presents a different level of uncertainty. Parameters from models are tuned with gradient-descent rule, a technique from neural networks field.
منابع مشابه
Neuro-fuzzy based model of batch fermentation of Kluyveromyces marxianus var. lactis MC5
In this work a neuro-fuzzy based model of a whey batch fermentation process by a strain Kluyveromyces marxianus var. lactis MC5 is presented. A three-layered neuro-fuzzy network is realized. The simulation results are compared with conventional models (based on mass balance and differential equations). The neuro-fuzzy model provides a better fitness and allows inclusion of linguistic variables ...
متن کاملModeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing
Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...
متن کاملBatch-to-batch Control of Batch Processes Based on Multilayer Recurrent Fuzzy Neural Network
The batch-to-batch model-based iterative optimal control strategy for batch processes is realized based on multilayer recurrent fuzzy neural network (MRFNN) and chaotic search. MRFNNs are used to model batch processes. Modeling and optimization problems are mainly solved by chaotic search. Due to model-plant mismatches and disturbances, the calculated optimal control profile may not be optimal ...
متن کاملOptimization of alkali catalyst for transesterification of jatropha curcus using adaptive neuro-fuzzy modeling
Biodiesel production from non edible oil through transesterification in batch reactor is highly effective technique for kinetic analysis. Temperature, molar ratio, mixing intensity and catalyst influenced the biodiesel production and kinetic. Alkaline catalysts are more efficient in nature as compare to acid and base catalyst. This paper particularly focuses on the impact of NaOH catalyst o...
متن کاملA Neuro-Fuzzy Model for a Dynamic Prediction of Milk Ultrafiltration Flux and Resistance
A neuro-fuzzy modeling tool (ANFIS) has been used to dynamically model cross flow ultrafiltration of milk. It aims to predict permeate flux and total hydraulic resistance as a function of transmembrane pressure, pH, temperature, fat, molecular weight cut off, and processing time. Dynamic modeling of ultrafiltration performance of colloidal systems (such as milk) is very important for design...
متن کامل